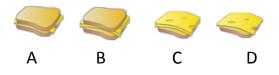
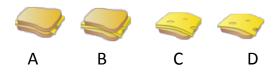
Reactants, Products and Leftovers Clicker questions

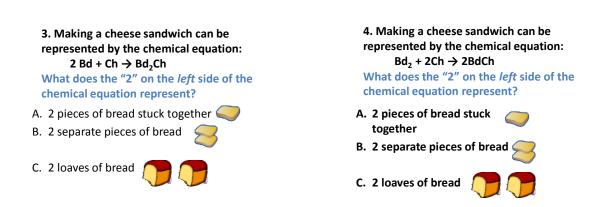
by Trish Loeblein <u>http://phet.colorado.edu</u> (assuming complete reactions)

Reactants, Products, and Leftovers <u>Activity 1</u>: Introduction to Chemical reactions


by Trish Loeblein http://phet.colorado.edu

Learning Goals:


Students will be able to:


- Relate the real-world example of making sandwiches to chemical reactions
- Describe what "limiting reactant" means using examples of sandwiches and chemicals at a particle level.
- · Identify the limiting reactant in a chemical reaction
- Use your own words to explain the Law of Conservation of Particles means using examples of sandwiches and chemical reaction

 Making a cheese sandwich can be represented by the chemical equation: 2 Bd + Ch → Bd₂Ch What would you expect a sandwich to look like?

 2. Making a cheese sandwich can be represented by the chemical equation: Bd₂ + 2Ch → 2BdCh
 What would you expect a sandwich to look like?

5. A menu at the Chemistry Café shows a sandwich: BdM₂Ch

What would you expect a sandwich to have?

- A. 2 pieces of bread, 2 pieces of meat, 1 piece of cheese
- B. 1 piece of bread, 2 pieces of meat, 1 piece of cheese
- C. 2 loaves of bread

6. A menu at the Chemistry Café describes a sandwich as 3 pieces of bread, one meat and 2 cheeses.

What would you expect a sandwich name to be?

A. Bd₂MCh₂
B. Bd₃M₂Ch
C. Bd₃MCh₂

7. The Chemistry Café owner was out of bread. She went to the bakery next door and bought a loaf which had 33 slices. Then she sells 12 sandwiches, which need 2 pieces of bread each. How much bread did she have left?

A. 21

- **B. 9**
- C. None, she gave the leftovers to the birds

8. The Chemistry Café cook has a loaf which had 33 slices and a package of cheese that has 15 slices. He is making sandwiches that have 2 pieces of both

bread and cheese. How many sandwiches can he make?

	33	2	A.16
Z	33	22	B.15
3	33	2 22	C.7

Reactants, Products, and Leftovers

Activity 2: Limiting Reactants in Chemical reactions

by Trish Loeblein <u>http://phet.colorado.edu</u> (assuming complete reactions)

Learning Goals: Students will be able to:

- Predict the amounts of products and leftovers after reaction using the concept of limiting reactant
- Predict the initial amounts of reactants given the amount of products and leftovers using the concept of limiting reactant
- Translate from symbolic (chemical formula) to molecular (pictorial) representations of matter
- Explain how subscripts and coefficients are used to solve limiting reactant problems.

1. A mixture of 4 moles of $\rm H_2$ and 3 moles of $\rm O_2$ reacts to make water. Identify: limiting reactant, excess reactant, and how much is unreacted.

	Limiting	Excess
	reactant	reactant
Α.	H ₂	1 mole H ₂
В.	H ₂	1 mole O ₂
C .	O ₂	1 mole H ₂
D.	O ₂	1 mole O ₂

E. No reaction occurs since the equation does not balance with 4 mole H₂ and 3 mole O₂

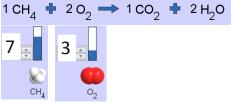
2. A mixture of 6 moles of H_2 and 2 moles of O_2 reacts to make water. How much water is made?

- A. 6 moles water
- B. 2 moles water
- C. 3 moles water
- D. 4 moles water
- E. No reaction occurs since the equation does not balance with 6 mole H₂ and 2 mole O₂

3. A mixture of 2.5 moles of Na and 1.8 moles of Cl₂ reacts to make NaCl. Identify: limiting reactant, excess reactant, and how much is unreacted.

Limiting	Excess
reactant	reactant

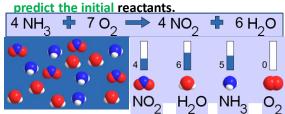
A. Na 0.7 mole Na


B. Na 0.7 mole Cl₂

- C. Na 0.55 mole Cl₂
- D. Cl₂ 0.7 mole Na
- E. Cl₂ 1 mole Na

4. A mixture of 2.5 moles of Na and 1.8 moles of Cl_2 reacts to make NaCl. How much sodium chloride is made?

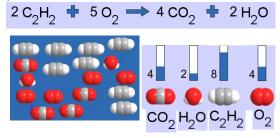
- A. 2.5 moles NaCl
- B. 1.8 moles NaCl
- C. 0.7 moles NaCl
- D. 0.55 moles NaCl
- E. 1 mole Nacl


Given the shown amounts for each reactant, predict the amounts of products and leftovers after complete reaction.

5. What are the amounts after the reaction? Initial:

 7 CH_4 and 3 O_2

1 CH ₄	+ 20 ₂	→ 1 CO ₂	♣ 2 H ₂ O
After: A. 6	1	1	2
B.1	6	1	2
C. 1	0	6	12
D.4	0	4	8


6. Given the shown amounts for the products and leftovers after a complete reaction,

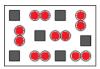
After: 5 NH ₃	0 0,	60 4 NO ₂	6 H ₂ O
4 NH ₃ 🕂	7 O ₂	\rightarrow 4 NO ₂	♣ 6 H ₂ O
Before:	_	_	_
A. 4 🔵	7		
B. 9 😞	7 🧲		
C. 10 🕓	7 🧲		
D. 4 🕓	0 🧲		

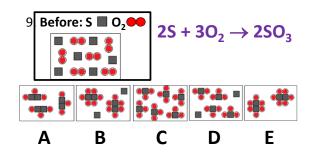
6. What are the amounts before the reaction?

7. Given the shown amounts for the products and leftovers after a complete reaction, predict the initial reactants.

7. What are the amounts before the reaction?

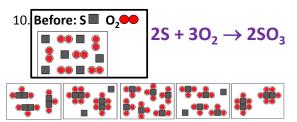
After:			
8 C ₂ H ₂	4 O ₂	4 CO ₂	2 H ₂ O
2 C ₂ H ₂ ♣	5 O ₂ →	• 4 CO ₂ 🗍	2 H ₂ O
Before: A. 2	10		
B. 12 💷	10		
C. 10	9 🌑		
D. 8 💷	4		


8. A mixture of S atoms (\blacksquare) and O_2 molecules (o) in a closed container is represented by the diagrams:


Which equation best describes this reaction?

A. $3X + 8Y \rightarrow X_3Y_8$ B. $X_3 + Y_8 \rightarrow 3XY_2 + 2Y$ C. $X + 2Y \rightarrow XY_2$ D. $3X + 8Y \rightarrow 3XY_2 + 2Y$ E. $X_3 + Y_8 \rightarrow 3XY_2 + Y_2$ From Lancaster/Perkins activity

9. An initial mixture of sulfur() and oxygen() is represented:



Using this equation: $2S + 3O_2 \rightarrow 2SO_3$, what would the results look like?

From Lancaster/Perkins activity

From Lancaster/Perkins activity

Which is the limiting reactant?

- A. Sulfur
- B. Oxygen
- C. Neither they are both completely used

From Lancaster/Perkins activity